首页 | 网站导航 | 联系我们
中文繁體 | 中文簡体 | English
  首页 > 科学研究 > 分子中医药

中药金樱子根中三萜类化学成分研究


代华年1,2,马国需3,邹节明4,钟小清4,周艳林4,吕高荣4,王云卿2,3,袁经权1,2,许旭东3*
摘    要:利用多种色谱分离方法对金樱子根中的化学成分进行分离和纯化,并根据化合物的理化性质和光谱分析进行结构鉴定。  从金樱子根的乙酸乙酯及丙酮提取部位中分离得到12个三萜类化学成分,分别鉴定为:  (2R,19R)    methyl  2-acetyloxy  -19-  hydroxyl-3-oxo-urs-12-  en-28-carboxylate  (1)、坡模酮酸  (2)、18,19-seco,2α,3α-dihydroxy-19-oxo-urs-11,13  (18)-dien-28-oic  acid  (3)、swinhoeic  acid  (4)、千花木酸  (5)、2α,3β,19α-trihydroxy-24-oxo-urs-12-en-oic  acid  (6)、委陵菜酸  (7)、阿江榄仁尼酸  (8)、1β-羟  基蔷薇酸  (9)、quadranoside  Ⅷ  (10)、高山地榆苷  (11)、rubuside  B  (12)。其中,化合物1  ~  4、6、9、11  ~  12为首次从金樱子中分离得到;化合物2~4、6、11~12为首次从蔷薇属分离得到。
关键词:金樱子;化学成分;三萜类;千花木酸;高山地榆苷
中药金樱子为蔷薇科蔷薇属灌木植物  (Rosa  laevigata  Michx.),主要分布于我国华东、中南、西南等地。《本草纲目》中记载金樱子“性酸、涩、平、无毒;主治脾泻下痢、止小便利、涩精气,久服,令人耐寒轻身,补血益精,有奇效”  [1]  。现代医学研究发现金樱子可用于皮肤肿瘤  、烧烫伤  、神经衰弱、高血压  、神经性头痛、慢性肾炎等的治疗[  2,  3]  。在传统中医药中金樱子的果实常作为利尿补肾的药材使用;叶子入药能够解毒消肿。目前,国内外学者从金樱子的果实和叶中已经分离纯化得到了甾体及甾体皂苷类、三萜及三萜皂苷类、木脂素、黄酮、可水解鞣质、多糖等多种化学成分。金樱子的根也常入药,亦称金樱根,具有拔毒收敛、活血化瘀、祛风驱湿等作用,是我国南方地区民间习用药材,也是生产三金片、金鸡胶囊、妇科千金片、王老吉等中成药的关键原料药材,但是目前对金樱根的物质基础和作用机理研究尚不够深入。因此,为了进一步阐明该药的有效成分,课题组对金樱子根的化学成分进行了系统研究,从中分离得到12个三萜类化合物,分别鉴定为:  (2R,19R)    methyl  2-acetyloxy  -19-  hydroxyl-3-oxo-urs-12-  en-28-carboxylate  (1)、坡模酮酸  (2)、18,19-seco,2α,3α-dihydroxy-19-oxo-urs-11,13  (18)-dien-28-oic  acid  (3)、swinhoeic  acid  (4)、千花木酸  (5)、2α,3β,19α-trihydroxy-24-oxo-urs-12-en-oic  acid  (6)、委陵菜酸  (7)、阿江榄仁尼酸  (8)、1β-羟  基蔷薇酸  (9)、quadranoside  Ⅷ  (10)、高山地榆苷  (11)、rubuside  B  (12)。上述物质当中,化合物1  ~  4、6、9、11  ~  12为首次从该植物中分离得到;化合物2  ~  4、6、11  ~  12为首次从蔷薇属分离得到。
1、实验仪器与材料
Bylabuv-Ⅲ灯  (北京炳洋科技有限公司),Bruker  Avance  Ⅲ  600型核磁共振波谱仪  (德国  Bruker公司),DZF-6030A真空干燥箱  (上海-恒科学仪器有点公司),Lumtech  高效液相色谱仪  (K501四元低压半制备),RE-2000A型旋转蒸发仪  (上海振捷实验设备有限公司)  ,色谱柱为Agilent  SB-Phenyl  5  µm,9.4×250  mm  (美国安捷伦公司),普通试剂均为分析纯  (中国医药集团上海化学试剂公司),HPLC试剂均为色谱纯,蒸馏水为实验室自制。
药材由桂林三金药业股份有限公司提供提供,采集于桂林市雁山镇,经广西壮族自治区民族医药研究院植物分类专家戴斌研究员鉴定为蔷薇科植物金樱子  (Rosa  laevigata  Michx)的根。
2、提取分离
金樱子根8.0  kg,阴干,粉碎,分别用石油醚、二氯甲烷、乙酸乙酯、丙酮、50%甲醇加热回流提取3次,每次提取1.5小时,减压浓缩各提取液,得到浸膏。
取乙酸乙酯部位  (132.5  g),经硅胶柱色谱分离,流动相为二氯甲烷-甲醇(100:0,  100:1,  80:1,  50:1,  10:1,  5:1,  2:1,  1:1,  0:100)进行梯度洗脱,将所得洗脱液薄层点板合并相同极性段部分,得到Fr.1~7共7个部位。Fr.4(CH3Cl-MeOH,  100:1,  80:1)部位用硅胶柱色谱分离,洗脱剂为石油醚-二氯甲烷(1:1)、二氯甲烷-甲醇(100:0,  40:1,  20:1,  5:1,  0:100  ),得到Fr.4.1~4.4共4个流分,Fr.4.3(CH3Cl-MeOH,  5:1)经半制备型HPLC(MeOH-H2O,  80:20)分离纯化,得到化合物1  (11.1  mg)、2(7.8mg);Fr.5(CH3Cl-MeOH,  50:1)部位用硅胶柱色谱分离,洗脱剂为石油醚-乙酸乙酯(10:1,  6:1,  3:1,  1:1,  0:100),二氯甲烷-甲醇(1:1,  0:100),得到Frs.5.1~5.8共8个流分。Fr.5.8(CH3Cl-MeOH,  1:1)经凝胶柱用甲醇洗脱分离,将所得洗脱液薄层点板合并相同极性段部分,得到Fr.5.8.1~5.8.6共6个流分。Fr.5.8.1经半制备型HPLC(MeOH-H2O,  76:24)分离纯化,得到化合物  3  (13.8  mg)、4  (22.8mg);Fr.5.8.4经半制备型HPLC(MeOH-H2O,  83:17)分离纯化,得到Fr.5.8.4.1~  Fr.5.8.4.3、化合物8  (16.8  mg)  及Fr.5.8.4.5、Fr.5.8.4.6。Fr.5.8.4.2经半制备型HPLC(MeOH-H2O,  78:22)分离纯化,得到化合物5  (4.5  mg)、6  (10.2  mg)。Fr.5.8.4.3经半制备型HPLC(MeOH-H2O,  70:30)分离纯化,得到化合物7  (15.3  mg)。Fr.6(CH3Cl-MeOH,  10:1)部位用硅胶柱色谱分离,流动相为二氯甲烷-甲醇  (100:0,  80:1,  60:1,  30:1,  20:1,  10:1,  5:1,  0:100)  经行梯度洗脱,得到Fr.6.1~6.6共6个流分。Fr.6.3经半制备型HPLC(MeOH-H2O,  82:18)分离纯化,得到化合物9  (9.3  mg)。
取丙酮部位  (223.5  g),经大孔树脂柱色谱分离,流动相为乙醇-水(0:100,  10:90,  30:70,  50:50,  70:30,  100:0)进行梯度洗脱,得Fr.1~6共6个部位。Fr.5    (7:3部位)  经中压柱色谱分离,流动相为甲醇-水  (30:70,  50:50,  60:40,  70:30,  85:15,  100:0)  经行梯度洗脱,得到Fr.5.1~5.9共9个部位。Fr.5.4经硅胶柱色谱分离,流动相为二氯甲烷-甲醇  (20:1,  8:1,  5:1,  100:0)  经行梯度洗脱,将所得洗脱液薄层点板合并相同极性段部分,得到Fr.5.4.1~5.4.3共3个流分。Fr.5.4.3经半制备型HPLC(MeOH-H2O,  68:32)分离纯化,得到化合物10  (15.0  mg);Fr.5.6经制备型HPLC(MeOH-H2O,  70:30)分离纯化,得到Fr.5.6.1~5.6.2。Fr.5.6.1经半制备型HPLC(MeOH-H2O,  66:34)分离纯化,得到化合物11  (11.5  mg);Fr.5.6.2经半制备型HPLC(MeOH-H2O,  65:35)分离纯化,得到化合物12  (15.3  mg)。
3、结构鉴定
化合物1    白色粉末,10%浓硫酸-乙醇溶液显紫红色。1H-NMR  (pyridine-d5,  600  MHz)  δ:1.04  (3H,  s,  26-CH3),1.10  (3H,  s,  23-CH3),1.12  (3H,  d,  J  =  6.6  Hz,  30-CH3),1.15  (3H,  s,  24-CH3),1.16  (3H,  s,  29-CH3),1.44  (3H,  s,  27-CH3),1.66  (3H,  s,  25-CH3),2.18  (3H,  s,  OAc),3.05  (1H,  s,  H-18),5.78  (1H,  br  s,  H-12),5.79  (1H,  dd,  J  =  6.6  Hz,  J  =  13.2  Hz,  H-2);13C-NMR  (pyridine-d5,  150  MHz)  δ:46.1  (C-1),72.6  (C-2),209.3  (C-3),49.2  (C-4),57.8  (C-5),19.8  (C-6),33.5  (C-7),40.8  (C-8),47.8  (C-9),38.5  (C-10),24.5  (C-11),127.8  (C-12),140.6  (C-13),42.6  (C-14),29.7  (C-15),26.8  (C-16),48.7  (C-17),55.0  (C-18),73.1  (C-19),42.8  (C-20),27.4  (C-21),38.9  (C-22),25.6  (C-23),21.7  (C-24),16.2  (C-25),17.7  (C-26),25.1  (C-27),181.0  (C-28),27.5  (C-29),17.2  (C-30),21.2  (OAc),170.5  (OAc)。其1H-NMR及13C-NMR谱数据与文献[4]报道的数据基本一致,故将化合物1鉴定为  (2R,19R)    methyl  2-acetyloxy  -19-  hydroxyl-3-oxo-urs-12-en-28-carboxylate。
化合物2    白色粉末,10%浓硫酸-乙醇溶液显紫红色。1H-NMR    (pyridine-d5,  600  MHz)  δ:0.92  (3H,  s,  26-CH3),1.00  (3H,  s,  23-CH3),1.10  (3H,  s,  24-CH3),1.11  (3H,  d,  J  =  7.2  Hz,  30-CH3),1.12  (3H,  s,  25-CH3),1.44  (3H,  s,  27-CH3),1.70  (3H,  s,  29-CH3),3.05  (1H,  s,  H-18),5.60  (1H,  t,  J  =  3.6  Hz,  H-12);13C-NMR    (pyridine-d5,  150  MHz)  δ:39.6  (C-1),33.4  (C-2),216.7  (C-3),47.9  (C-4),55.9  (C-5),20.3  (C-6),34.8  (C-7),40.7  (C-8),47.3  (C-9),37.3  (C-10),24.4  (C-11),128.2  (C-12),140.5  (C-13),42.6  (C-14),29.7  (C-15),26.8  (C-16),48.7  (C-17),55.1  (C-18),73.1  (C-19),42.8  (C-20),27.3  (C-21),38.9  (C-22),27.5  (C-23),22.0  (C-24),15.4  (C-25),17.4  (C-26),25.0  (C-27),181.1  (C-28),27.0  (C-29),17.2  (C-30)。其1H-NMR及13C-NMR谱数据与文献[5]报道的数据基本一致,故将化合物2鉴定为坡模酮酸。
化合物3    白色粉末,10%浓硫酸-乙醇溶液显紫红色。1H-NMR    (pyridine-d5,  600  MHz)  δ:  0.89  (3H,  s,  24-CH3),0.89  (3H,  s,  26-CH3),0.95  (3H,  s,  27-CH3),0.97  (3H,  s,  28-CH3),1.04  (3H,  d,  J  =  6.6  Hz,  30-CH3),1.25  (3H,  s,  23-CH3),2.10  (3H,  s,  24-CH3),3.78  (1H,  d,  J  =  1.8  Hz,  H-2),4.35  (1H,  dt,  J  =  10.8  Hz,  3.6  Hz,  H-2),5.80  (1H,  d,  J  =  10.8  Hz,  H-12),5.85  (1H,  s,  H-18),6.15  (1H,  dd,  J  =  2.4  Hz,  J=  9.6  Hz,  H-11);13C-NMR    (pyridine-d5,  150  MHz)  δ:43.1  (C-1),  66.4  (C-2),79.8    (C-3),  39.5  (C-4),  48.6  (C-5),  18.7  (C-6),  33.0  (C-7),  41.5  (C-8),  55.0  (C-9),  38.8  (C-10),127.9  (C-11),131.0  (C-12),144.2  (C-13),42.0  (C-14),27.1  (C-15),28.0  (C-16),48.2  (C-17),128.1  (C-18),212.0  (C-19),47.9  (C-20),28.7  (C-21),39.3  (C-22),29.7  (C-23),22.1  (C-24),19.6  (C-25),17.3  (C-26),20.5  (C-27),179.6  (C-28),28.4  (C-29),16.7  (C-30)。其1H-NMR及13C-NMR谱数据与文献[6]报道的数据基本一致,故将化合物3鉴定为18,19-seco,2α,3α-dihydroxy-19-oxo-urs-11,13  (18)-dien-28-oic  acid。
化合物4    白色粉末,10%浓硫酸-乙醇溶液显紫红色。1H-NMR    (pyridine-d5,  600  MHz)  δ:0.88  (3H,  s,  26-CH3),0.99  (3H,  s,  23-CH3),1.03  (3H,  d,  J  =  6.6  Hz,  30-CH3),1.05  (3H,  s,  27-CH3),1.06  (3H,  s,  25-CH3),1.26  (3H,  s,  24-CH3),2.10  (3H,  s,  29-CH3),3.41  (1H,  d,  J  =  9.6  Hz,  H-3),4.15  (1H,  m,  H-2),5.77  (1H,  d,  J  =  10.2  Hz,  H-12),5.87  (1H,  s,  H-18),6.16  (1H,  dd,  J  =  2.4  Hz,  H-11);13C-NMR    (pyridine-d5,  150  MHz)  δ:47.8  (C-1),69.0  (C-2),84.3  (C-3),40.3  (C-4),55.9  (C-5),19.1  (C-6),33.0  (C-7),41.3  (C-8),55.1  (C-9),38.7  (C-10),127.8  (C-11),131.0  (C-12),144.0  (C-13),42.0  (C-14),27.1  (C-15),28.0  (C-16),48.1  (C-17),128.3  (C-18),212.1  (C-19),47.9  (C-20),28.6  (C-21),39.5  (C-22),17.3  (C-23),29.4  (C-24),19.8  (C-25),17.5  (C-26),20.6  (C-27),179.4  (C-28),28.4  (C-29),16.7  (C-30)。其1H-NMR及13C-NMR谱数据与文献[7]报道的数据基本一致,故将化合物4鉴定为swinhoeic  acid。
化合物5    白色粉末,10%浓硫酸-乙醇溶液显紫红色。1H-NMR    (pyridine-d5,  600  MHz)  δ:  0.85    (3H,  s,  24-CH3),1.01    (3H,  s,  25-CH3),1.09    (3H,  d,  J  =  6.0  Hz,  30-CH3),1.12    (3H,  s,  26-CH3),1.40    (3H,  s,  29-CH3),1.66    (3H,  s,  27-CH3),3.03    (1H,  s,  H-18),3.09    (1H,  dt,  J  =  13.2  Hz,  4.8  Hz,  H-16),3.74    (1H,  d,  J  =  10.2  Hz,  H-23a),3.91    (1H,  d,  J  =  10.2  Hz,  H-23b),4.13  (1H,  d,  J  =  1.8  Hz,  H-3),4.27    (1H,  td,  J  =  10.8  Hz,  3.6Hz,  H-2),5.58    (1H,  br  s,  H-12);13C-NMR    (pyridine-d5,  150  MHz)  δ:42.6  (C-1),66.7  (C-2),79.3  (C-3),43.1  (C-4),48.2  (C-5),18.9  (C-6),33.6  (C-7),40.9  (C-8),44.0  (C-9),38.8  (C-10),24.5  (C-11),128.4  (C-12),140.4  (C-13),42.3  (C-14),29.7  (C-15),26.9  (C-16),48.7  (C-17),55.0  (C-18),73.1  (C-19),42.8  (C-20),27.4  (C-21),38.9  (C-22),71.7  (C-23),17.5  (C-24),17.7  (C-25),18.2  (C-26),  25.1  (C-27),181.2  (C-28),27.5  (C-29),17.2  (C-30)。其1H-NMR及13C-NMR谱数据与文献[8]报道的数据基本一致,故将化合物5鉴定为千花木酸。
化合物6    白色粉末,10%浓硫酸-乙醇溶液显紫红色。1H-NMR    (pyridine-d5,  600  MHz)  δ:0.93  (3H,  s,  29-CH3),0.99  (3H,  s,  27-CH3),1.11  (3H,  s,  26-CH3),1.18  (3H,  d,  J  =  6.6  Hz,  30-CH3),1.55  (3H,  s,  25-CH3),1.62  (3H,  s,  23-CH3),3.60  (1H,  d,  J  =  3.6  Hz,  H-3),4.59  (1H,  dt,  J  =  10.8  Hz,  4.2  Hz,  H-2),5.53  (1H,  br  s,  H-12),10.46  (1H,  s,  H-24);13C-NMR    (pyridine-d5,  150  MHz)  δ:47.3  (C-1),68.9  (C-2),82.8  (C-3),55.5  (C-4),57.8  (C-5),20.0  (C-6),33.6  (C-7),40.3  (C-8),47.6  (C-9),39.2  (C-10),26.6  (C-11),128.0  (C-12),140.2  (C-13),42.7  (C-14),29.5  (C-15),27.1  (C-16),48.5  (C-17),55.0  (C-18),72.8  (C-19),42.5  (C-20),25.2  (C-21),38.8  (C-22),25.2  (C-23),207.5  (C-24),17.1  (C-25),17.8  (C-26),22.3  (C-27),180.9  (C-28),27.4  (C-29),17.7  (C-30)。其1H-NMR及13C-NMR谱数据与文献[9]报道的数据基本一致,故将化合物6鉴定为2α,3β,19α-trihydroxy-24-oxo-urs-12-en-oic  acid。
化合物7    白色粉末,10%浓硫酸-乙醇溶液显紫红色。1H-NMR    (pyridine-d5,  600  MHz)  δ:1.00  (3H,  s,  25-CH3),1.07  (3H,  s,  24-CH3),1.10  (3H,  s,  26-CH3),1.11  (3H,  d,  J  =  6.6  Hz,  30-CH3),1.26  (3H,  s,  23-CH3),1.42  (3H,  s,  29-CH3),1.70  (3H,  s,  27-CH3),3.37  (1H,  d,  J  =  9.0  Hz,  H-2),4.09  (1H,  m,  H-2),5.58  (1H,  t,  J  =  3.6  Hz,  H-12);13C-NMR    (pyridine-d5,  150  MHz)  δ:48.4  (C-1),69.1  (C-2),84.3  (C-3),40.3  (C-4),56.4  (C-5),19.5  (C-6),34.0  (C-7),40.9  (C-8),48.3  (C-9),39.0  (C-10),24.6  (C-11),128.4  (C-12),140.4  (C-13),42.6  (C-14),29.7  (C-15),26.9  (C-16),48.9  (C-17),55.1  (C-18),73.2  (C-19),42.8  (C-20),27.4  (C-21),38.9  (C-22),29.8  (C-23),18.1  (C-24),17.3  (C-25),17.7  (C-26),25.1  (C-27),181.1  (C-28),27.6  (C-29),17.2  (C-30)。其1H-NMR及13C-NMR谱数据与文献[10]报道的数据数据基本一致,故将化合物7鉴定为委陵菜酸。
化合物8    白色粉末,10%浓硫酸-乙醇溶液显紫红色。1H-NMR    (pyridine-d5,  600  MHz)  δ:  1.01    (3H,  s,  26-CH3),  1.06    (3H,  s,  25-CH3),1.08    (3H,  s,  24-CH3),  1.10    (3H,  s,  30-CH3),  1.18    (3H,  s,  29-CH3),  1.26    (3H,  s,  23-CH3),1.63    (3H,  s,  27-CH3),  3.38    (1H,  d,  J  =  9.6  Hz,  H-3),  3.60    (2H,  d,  J  =  9.0  Hz,  H-18,  19),  4.10    (1H,  td,  J  =  10.8,  4.2  Hz,  H-2),  5.55    (1H,  br  s,  H-12);13C-NMR    (pyridine-d5,  150  MHz)  δ:47.9  (C-1),69.0  (C-2),84.2  (C-3),39.1  (C-4),56.4  (C-5),19.3  (C-6),33.7  (C-7),40.5  (C-8),48.8  (C-9),40.3  (C-10),24.7  (C-11),124.4  (C-12),145.3  (C-13),42.6  (C-14),29.5  (C-15),28.8  (C-16),46.5  (C-17),45.2  (C-18),81.6  (C-19),36.1  (C-20),29.6  (C-21),34.0  (C-22),29.7  (C-23),18.0  (C-24),17.2  (C-25),17.9  (C-26),25.2  (C-27),181.3  (C-28),29.2  (C-29),25.2  (C-30)。其1H-NMR及13C-NMR谱数据与文献[11]报道的数据基本一致,故将化合物8鉴定为阿江榄仁尼酸。
化合物9    白色粉末,10%浓硫酸-乙醇溶液显紫红色。1H-NMR    (pyridine-d5,  600  MHz)  δ:0.93    (3H,  s,  24-CH3),1.10    (3H,  d,  J  =  6.6  Hz,  30-CH3),1.20    (3H,  s,  26-CH3),1.24    (3H,  s,  25-CH3),1.26    (3H,  s,  23-CH3),1.41    (3H,  s,  29-CH3),1.67    (3H,  s,  27-CH3),  3.85    (1H,  d,  J  =  2.4  Hz,  H-3),4.11    (1H,  d,  J  =  9.6  Hz,  H-1),4.14    (1H,  d,  J  =  2.4  Hz,  H-2),5.69    (1H,  br  s,  H-12);13C-NMR    (pyridine-d5,  150  MHz)  δ:81.3  (C-1),71.9  (C-2),80.2  (C-3),38.9  (C-4),50.0  (C-5),19.3  (C-6),34.3  (C-7),41.7  (C-8),49.1  (C-9),44.2  (C-10),28.5  (C-11),130.0  (C-12),139.3  (C-13),42.6  (C-14),29.9  (C-15),27.0  (C-16),48.8  (C-17),55.0  (C-18),73.2  (C-19),42.8  (C-20),27.4  (C-21),38.9  (C-22),29.8  (C-23),22.8  (C-24),13.4  (C-25),18.1  (C-26),25.2  (C-27),181.1  (C-28),27.5  (C-29),17.2  (C-30)。其1H-NMR及13C-NMR谱数据与文献[12]报道的数据基本一致,故将化合物9鉴定为1β-羟基蔷薇酸。
化合物10    白色粉末,10%浓硫酸-乙醇溶液显紫红色。1H-NMR    (pyridine-d5,  600  MHz)  δ:1.03  (3H,  d,  J  =  6.6  Hz,  30-CH3),1.06  (3H,  s,  24-CH3),1.10  (3H,  s,  25-CH3),1.14  (3H,  s,  27-CH3),1.16  (3H,  s,  26-CH3),3.70  (1H,  d,  J  =  10.2  Hz,  H-23a),4.17  (1H,  d,  J  =  10.2  Hz,  H-23b),3.77  (1H,  s,  H-18),4.17  (1H,  m,  H-3),4.18  (1H,  m,  H-2),5.00  (1H,  br  s,  H-29a),5.13  (1H,  br  s,  H-29b),5.51  (1H,br  s,  H-12),6.32  (1H,  d,  J  =  8.4  Hz,  H-1’);13C-NMR    (pyridine-d5,  150  MHz)  δ:48.2  (C-1),69.4  (C-2),78.6  (C-3),44.1  (C-4),48.6  (C-5),19.0  (C-6),33.5  (C-7),40.3  (C-8),49.4  (C-9),38.9  (C-10),24.3  (C-11),129.0  (C-12),138.0  (C-13),43.3  (C-14),29.5  (C-15),26.2  (C-16),50.2  (C-17),52.7  (C-18),153.7  (C-19),38.0  (C-20),31.1  (C-21),37.5  (C-22),66.5  (C-23),14.8  (C-24),18.1  (C-25),17.9  (C-26),26.6  (C-27),176.5  (C-28),110.9  (C-29),20.0  (C-30)。其1H-NMR及13C-NMR谱数据与文献[13]报道的数据基本一致,故将化合物10鉴定为quadranoside  Ⅷ。
化合物11    白色粉末,10%浓硫酸-乙醇溶液显紫红色。1H-NMR    (pyridine-d5,  600  MHz)  δ:0.89  (3H,  s,  24-CH3),0.99  (3H,  s,  25-CH3),1.02  (3H,  d,  J  =  6.6  Hz,  30-CH3),1.11  (3H,  s,  26-CH3),1.14  (3H,  s,  27-CH3),1.25  (3H,  s,  23-CH3),3.75  (1H,  d,  J  =  2.4  Hz,  H-3),4.29  (1H,  dt,  J  =  10.8  Hz,  3.6Hz,  H-2),4.99  (1H,  br  s,  H-29),5.11  (1H,  br  s,  H-29),5.51  (1H,  br  s,  H-12),6.31  (1H,  d,  J  =  7.8  Hz,  H-1’);13C-NMR    (pyridine-d5,  150  MHz)  δ:43.3  (C-1),66.5  (C-2),79.8  (C-3),39.2  (C-4),49.3  (C-5),18.9  (C-6),33.8  (C-7),40.5  (C-8),48.4  (C-9),39.2  (C-10),24.3  (C-11),128.9  (C-12),137.9  (C-13),43.4  (C-14),29.5  (C-15),26.2  (C-16),50.2  (C-17),52.6  (C-18),153.7  (C-19),37.9  (C-20),31.1  (C-21),37.6  (C-22),22.7  (C-23),29.9  (C-24),17.8  (C-25),17.3  (C-26),26.6  (C-27),176.5  (C-28),110.9  (C-29),19.8  (C-30),96.3  (C-1’),74.5  (C-2’),79.3  (C-3’),71.5  (C-4’),79.6  (C-5’),62.6  (C-6’)。其1H-NMR及13C-NMR谱数据与文献[14]报道的数据基本一致,故将化合物11鉴定为高山地榆苷。
化合物12    白色粉末,10%浓硫酸-乙醇溶液显红色紫。1H-NMR    (pyridine-d5,  600  MHz)  δ:  0.88  (3H,  s,  24-CH3),0.97  (3H,  d,  J  =  6.6  Hz,  30-CH3),1.00  (3H,  s,  25-CH3),1.00  (3H,  s,  25-CH3),1.17  (3H,  s,  26-CH3),1.25  (3H,  s,  23-CH3),1.75  (3H,  s,  29-CH3),3.75  (1H,  d,  J  =  1.8  Hz,  H-2),4.32  (1H,  dt,  J  =  10.8  Hz,  3.6  Hz,  H-2),5.68  (1H,  br  s,  H-12),6.33  (1H,  d,  J  =  8.4  Hz,  H-1’);13C-NMR    (pyridine-d5,  150  MHz)  δ:44.0  (C-1),66.5  (C-2),79.7  (C-3),39.3  (C-4),49.3  (C-5),18.8  (C-6),35.5  (C-7),40.1  (C-8),48.7  (C-9),39.0  (C-10),24.0  (C-11),127.0  (C-12),139.2  (C-13),45.4  (C-14),29.5  (C-15),35.7  (C-16),50.3  (C-17),134.2  (C-18),136.4  (C-19),35.0  (C-20),27.2  (C-21),31.4  (C-22),30.0  (C-23),22.8  (C-24),17.8  (C-25),19.1  (C-26),22.5  (C-27),175.2  (C-28),20.0  (C-29),19.0  (C-30)。其1H-NMR及13C-NMR谱数据与文献[15]报道的数据基本一致,故将化合物12鉴定为rubuside  B。
4、讨论
金樱子根是三金片、金鸡胶囊、妇科千金片、王老吉凉茶等著名中药产品的重要原料,其富含三萜类成分。三萜及其皂苷具有抗炎、抗肿瘤、抗菌、抗病毒、溶血、杀软体动物等活性,同时还具有降低胆固醇及高血脂、抗心肌缺血、提高记忆、抗生育等作用[16-19]。本实验从金樱子根中分离得到12个三萜类化合物,其中化合物2、5、9具有抗炎活性[20-22],化合物2具有抗病毒活性[23],化合物8具有抗氧化活性[24],化合物12具有降糖活性[25],这些物质基础的生物活性,与金樱子根拔毒收敛、活血化瘀、祛风驱湿等功效,特别是与其在尿道炎症、妇科炎症的临床应用具有一定的相对应性。本研究对进一步发现金樱子根活性成分,推动金樱子根质量标准控制水平提升,促进三金片等相关中成药二次产品开发,具有重要的积极意义。 
参考文献:
[1] 李时珍.本草纲目  [M],下册.北京:  人民卫生出版社,  1975:  2096,  2697.
[2] 江苏新医学院.  中药大字典  [  M]    (  上册),  上海:  上海人民出版社,  1977.  1406.
[3] 闵运江,  刘文中,  陈乃富.  皖西大别山区金樱子野生资源储备量的调查研究  [  J].  生物学杂志,  2001,  18  (  2):  26.
[4] René  Csuk,    Bianka  Siewert,    Christian  Dressel,    et  al.  Tormentic  acid  derivatives:  Synthesis  and  apoptotic  activity  [J].    Eur  J  Med  Chem,  2012,  56:  237.
[5] 周凌云.  紫珠地上部分的化学成分  [J].  中草药,  2011,  42  (3):  454.
[6] 黄  平,  Karagianis  Gloria,  韦善新,  et  al.  飞龙掌血中三萜酸成分研究  [J].    天然产物研究与开发,  2005,  17  (4):  404.
[7] Wei  Quan  ZHAO,  Li  Sheng  DING,  Qiang  ZHANG,  et  al.  A  Novel  Ursane  Triterpene  from  Rubus  swinhoei  [J].  Chinese  Chem  Lett,  2001,  12  (3):  245.
[8] Lee  T  H,  Juang  S  H,  Hsu  F  L,  et  al.  Triterpene  acids  from  the  Leaves  of  Planchonelladuclitan      (Blanco)  Bakhuizan  [J].J  Chin  Chem  Soc-Taip,  2005,  52  (6):  1275.
[9] Christian  Terreaux,  Marc  P.  Maillard,  Mahabir  P.  Gupta  et  al.  Triterpenes  and  triterpene  glycosides  from  paradrymonia  macrophylla  [J].  Phytochemistrv,  1996,  42  (2):    495.
[10] 李路军,  虞丽娟,  吴正治,  等.  柔茎香茶菜醋酸乙酯部位化学成分研究  [J].  中草药,  2015,  46  (3):  339.
[11] 郭启雷,  杨俊山.  掌叶覆盆子的化学成分研究  [J].  中国中药杂志,  2005,  30  (3):  198.
[12] Guang-Yi,  Gray  AI,  Waterman  PG.  Pentacyclic  Triterpenes  from  the  fruits  of  Rosa  sterilis  [J].  J  Nat  Prod,  1989,  52  (1):  162.
[13] I  Ketut  Adnyana,  Yasuhiro  Tezuka,  Suresh  Awale  et  al.  Quadranosides  VI-XI,  Six  New  Triterpene  Glucosides  from  the  Seeds  of  Combretum  quadrangulare  [J].  Chem  Pharm  Bull,  2000,  48  (8):  1114.
[14] 贾忠建,  刘向前,  刘自民.  高山地榆三萜皂苷成分研究  [J].  高等学校化学学报,1992,  13  (7):  945.
[15] Wei  Li,  Hongwei  Fu,  Hong  Bai,  et  al.  Triterpenoid  Saponins  from  Rubus  ellipticus  var.  obcordatus  [J].  J  Nat  Prod,  2009,  72  (10):  1755.
[16]        Qin  WZ.Tripterygium  Wilfordii  Hook  F  in  systemic  lupus  erythematosus:report  of  103  case.Chin  Med  J,1981,94(12):827
[17]              Mahato  SB,  Nandy  AK,  Roy  G.  Triterpenoids.  Phytochemistry,1992,31(7):2199.
[18]      李娇,  郑纺,  翟丽娟,  等.  三萜类化合物抗肿瘤活性研究进展[J].  中草药,2014,45(15):2265
[19]              张云峰,  魏东,  邓雁如,等.  三萜皂苷的生物活性研究新进展[J].中成药,2006,28(9):1349.
[20]          Lin,  Chu-Hung,  Chang,  Hsun-Shuo,  Liao,  Hsiang-Ruei,  et  al.  Triterpenoids  from  the  roots  of  Rhaphiolepis  indica  var.  tashiroi  and  their  anti-inflammatory  activity[J].  Int  J  Mo  Sci,  2013,  14(5):  8890.
[21]            Yan  Min,  Zhu  Yan,  Zhang  Hongjun,  et  al.  Anti-inflammatory  secondary  metabolites  from  the  leaves  of  Rosa  laevigata[J].  Bioorg  Med  Chem,2013,21:3290.
[22]              Norihiro  Banno,  Toshihiro  Akihisa,  Harukuni  Tokuda,  et  al.  Anti-inflammatory  and  Antitumor-Promoting  Effects  of  the  Triterpene  Acids  from  the  Leaves  of  Eriobotrya  japonica[J].  Biol  Pharm  Bull,  2005,28(10):1995.
[23]                  Ryu,  Shi  Yong;  Lee,  Chong  Kyo;  Ahn,  Jong  Woong,  et  al.Antiviral  activity  of  triterpenoid  derivatives[J].  Arch  Pharm  Res,  1993,  16(4),  339.
[24]                  Zhang,  Li-Jie;  Cheng,  Jing-Jy;  Liao,  Chia-Ching,  et  al.  Triterpene  acids  from  Euscaphis  japonica  and  assessment  of  their  cytotoxic  and  anti-NO  activities[J].    Planta  Med,  2012,  78(14),  1584.
[25]                  Wei  Li,  Hongwei  Fu,    Hong  Bai,  et  al.  Triterpenoid  Saponins  from  Rubus  ellipticus  var.  obcordatus[J].  J.  Nat.  Prod  ,  2009,  72,  1755.
首页  |  上一页  |  下一页  |  末页   1 页  共 1 页 
我要投稿 发表评论 察看评论或转发

 

  :: 新闻媒体
 
  :: 图片资料库
 
  焦点
:: 如何提升抗肿瘤药物的研发成功率
:: SDTL生命因子 - 对中西医药现代化的突破与挑战 《中国经济周刊》
:: 通告-《䆁慧远(国际)生命科学基金会》改名为《香港(国际)生命科学学会》
:: 港科研机构推治疗H7N9新方法
:: 港府优化政策促科技创新
:: 世界选择了中医药 ——首届中医药全球大会盛况空前
:: SDTL生命因子 —— 对中西医药现代化的突破与挑战《中国经济周刊》
:: 中医药的「性味」与小分子药物
:: 我为什么弃西从中
:: 血管神经性头痛患者不可忽视颈椎病
:: 传媒 --- 退化性关节炎
:: SARS病人使用SDTL疗法现身说法
:: SDTL生命因子可解决高原缺氧难题
:: 取消中医药不智,但「三效瓶颈」有待突破
:: 马来西亚生物学界、马六甲州政府代表团访问释慧远(国际)生命科学基金会工作交流简报
:: 纳米小分子--将成药物研究突破口
:: 港发展生物研究 恢复青春
:: 人类与疾病的战争/ 释慧远
:: “SDTL生命因子”:生命科学的突破与应用——访著名分子医学家、生物科学家释慧远教授
 
  最新消息
:: 最后一块基因“拼图”揭开哪些生命谜团
:: 国新办“权威部门话开局”系列主题发布会聚焦药品监管五年31个中药新药获批上市
:: AI制药或将终结药物研发“双十定律
:: 国家发改委就产业结构调整指导目录征求意见
:: SDTL生命因子 - 对中西医药现代化的突破与挑战 《中国经济周刊》
:: 通告-《䆁慧远(国际)生命科学基金会》改名为《香港(国际)生命科学学会》
:: 港科研机构推治疗H7N9新方法
:: 港府优化政策促科技创新
:: 世界选择了中医药 ——首届中医药全球大会盛况空前
:: SDTL生命因子 —— 对中西医药现代化的突破与挑战《中国经济周刊》
  --> 更多消息...
    联系我们   |   意见与建议   |   我要投稿   |   我要留言   |   收藏本站
Copyright © 2008 香港(国际)生命科学学会。 本网站所有发表文章,仅代表个人意见,并不代表本会立场!